
CS3485
Deep Learning for Computer Vision

Lec 9: Transfer Learning and Residual Nets

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

Recap: VGG16 network

■ Last time, we saw the VGG16 network that produced incredible results on the ImageNet
challenge using a somewhat simple architecture.

■ Despite its simplicity, this network is very slow to train (the original VGG model was
trained in 2-3 weeks), mainly because of its sheer amount of parameters: 135 million!

3
×2

44
×2

44

64×244×244
128×112×112 256×56×56 512×28×28 512×14×14 512×7×7 1×1×4096 1×1×4096 1×1×1000

ConvLayer Max-pool Dense layer

■ Beyond the size problem found in the VGG16 architecture, it also faces what is called the
Vanishing Gradient problem, which makes its training slower.

■ Today, we’ll see how make the deep networks useful in practice for computationally low
budget applications using of a technique called transfer learning, which takes
advantages of pre trained neural networks.

■ We’ll also see how to overcome the Vanishing Gradient problem via what are called
Residual Networks.

Deep Nets in practice

Transfer Learning

■ Transfer learning is a technique where knowledge gained from one task is leveraged to
solve another similar task.

■ Specifically to the image classification task, we can make use of the visual features
learned by one network trained on some dataset and tune it so that learned feature
extractor can be used in our specific dataset.

■ Put in another way, we reuse
the pre-trained weights
from a network on its feature
learning phase and only
replace the final dense
layers so the final model fits
our data.

Transfer Learning

■ An example of this would be like done below, where the knowledge of what was learned
by a CNN while trained on given dataset (like ImageNet) is transferred to another
problem that does not involve the same kinds of images from the first dataset.

■ From this perspective, the main purpose of the final dense layers on the second problem
is to adapt that knowledge (the CNN output) to the new classes. This process is called
fine tuning.

Dataset 1
(Ex.: ImageNet)

Feature Learning
(CNN)

Final Classifier
(Dense)

Final Classes
(bike, horse, hair
spray, chair, …)

Dataset 2
(Ex.: Cats and Dogs)

Feature Learning
(CNN)

Final Classifier
(Dense)

Final Classes
(cat or dog)

Knowledge being transferred

Transfer Learning: Preprocessing

■ In order for transfer learning to work in its full potential, some preprocessing of the new
dataset has to be done before it enters in the pre-trained network.

■ This ensures that the data coming follows the same format of the data it was trained on.

■ In the case of the VGG net, we need the images to RGB of size 244×244. We also
normalize them to follow the same mean and std from the ImageNet data.

Dataset 1
(Ex.: ImageNet)

Feature Learning
(CNN)

Final Classifier
(Dense)

Final Classes
(bike, horse, hair
spray, chair, …)

Dataset 2
(Ex.: Cats and Dogs)

Feature Learning
(CNN)

Final Classifier
(Dense)

Final Classes
(cat or dog)

Knowledge being transferred

Pr
e-

Pr
oc

es
si

ng

■ To try out transfer learning, we’ll use a famous dataset called Cats vs. Dogs.
■ The dataset contains 12491 and 12470 photos of various sizes of cats and dogs,

respectively, under various challenging settings.

■ It is organized in two folders (test and train data), each with a cat and a dog subfolder.
■ Our objective is to use VGG16 trained on ImageNet to learn a classifier for this dataset.

Cats vs. Dogs Dataset

https://www.kaggle.com/c/dogs-vs-cats

Cats vs. Dogs dataset class

■ Since we are not using one of PyTorch’s datasets, our Dataset class is more complicated:

from glob import glob
import torchvision.transforms as transforms
import torchvision.io as io

class CatsDogs(Dataset):
 def __init__(self, folder):
 cats, dogs = glob(folder+ '/cats/*.jpg'), glob(folder+ '/dogs/*.jpg')
 self.img_paths = cats[: 500] + dogs[:500]
 self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])
 self.resize = transforms.Resize((224, 224))
 self.labels = [fpath.split('/')[-1].startswith('dog')
 for fpath in self.img_paths]
 def __len__(self):
 return len(self.img_paths)
 def __getitem__(self, ix):
 img = io.read_image(self.img_paths[ix])
 label = torch.tensor([self.labels[ix]])
 img = self.resize(img/ 255.)
 img = self.normalize(img)
 return img.float().to(device) , label.float().to(device)

Cats vs. Dogs dataset class

■ Since we are not using one of PyTorch’s datasets, our Dataset class is more complicated:

from glob import glob
import torchvision.transforms as transforms
import torchvision.io as io

class CatsDogs(Dataset):
 def __init__(self, folder):
 cats, dogs = glob(folder+ '/cats/*.jpg'), glob(folder+ '/dogs/*.jpg')
 self.img_paths = cats[: 500] + dogs[:500]
 self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])
 self.resize = transforms.Resize((224, 224))
 self.labels = [fpath.split('/')[-1].startswith('dog')
 for fpath in self.img_paths]
 def __len__(self):
 return len(self.img_paths)
 def __getitem__(self, ix):
 img = io.read_image(self.img_paths[ix])
 label = torch.tensor([self.labels[ix]])
 img = self.resize(img/ 255.)
 img = self.normalize(img)
 return img.float().to(device) , label.float().to(device)

Fetch for all image paths under
each folder using the library glob.

Only use the first 500 images of
each class, for a total of 1000.

We’ll use this function to change
the mean and standard deviation
of each channel in each datapoint

to match those statistics from
ImageNet

We’ll also use this function to
resize the images to the size

originally used by VGG16.

This creates the vector of labels
according to which folder each file

is located in.

Cats vs. Dogs dataset class

■ Since we are not using one of PyTorch’s datasets, our Dataset class is more complicated:

from glob import glob
import torchvision.transforms as transforms
import torchvision.io as io

class CatsDogs(Dataset):
 def __init__(self, folder):
 cats, dogs = glob(folder+ '/cats/*.jpg'), glob(folder+ '/dogs/*.jpg')
 self.img_paths = cats[: 500] + dogs[:500]
 self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])
 self.resize = transforms.Resize((224, 224))
 self.labels = [fpath.split('/')[-1].startswith('dog')
 for fpath in self.img_paths]
 def __len__(self):
 return len(self.img_paths)
 def __getitem__(self, ix):
 img = io.read_image(self.img_paths[ix])
 label = torch.tensor([self.labels[ix]])
 img = self.resize(img/ 255.)
 img = self.normalize(img)
 return img.float().to(device) , label.float().to(device)

Reads the image in a given path

Turns the image label into a tensor

Resizes and normalizes the image

Cats vs. Dogs dataset and VGG16 model

■ Now, say that you divided the dataset in a folder for training data and another for testing.
You can then create the train and test data loaders as follows:

■ With the data done, go to the creation of our model. We’ll use the VGG16 network with
pretrained weights when it was trained on the ImageNet dataset.

■ In PyTorch, we specify this requirement by setting the parameter weights on
models.vgg16 to the set of weights we are want, in this case IMAGENET1K_V1.

train_data_dir, test_data_dir = 'training_set', 'test_set'

train = CatsDogs(train_data_dir)
test = CatsDogs(test_data_dir)
trn_dl = DataLoader(train, batch_size=32, shuffle=True)
test_dl = DataLoader(test, batch_size=32, shuffle=True)

model = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1)

Checking the model

■ As per good practice, we print the model to check what it provides us:

print(model)

VGG(
 (features): Sequential(

(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
(...)
(29): ReLU(inplace=True)
(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

)
 (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
 (classifier): Sequential(

(0): Linear(in_features=25088, out_features=4096, bias=True)
(1): ReLU(inplace=True)
(2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU(inplace=True)
(5): Dropout(p=0.5, inplace=False)
(6): Linear(in_features=4096, out_features=1000, bias=True)

)
)

Changing the model

■ The model has three submodels: features, avgpool and classifier. Our goal is:
a. make the features module’s weights fixed,
b. adapt the last two modules to our problem and learn their weights.

■ For a, we just need to make the parameters of the features module not learnable by
setting their requires_grad option to false:

■ For b, we replace VGG16’s original AvgPool layer with one that returns a tensor of size
512×1×1 and replace its classifier layer with one that outputs a simple scalar (which is
enough for us, since our dataset only has two classes)

for param in model.features.parameters():
 param.requires_grad = False

model.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1))
model.classifier = nn.Sequential(nn.Flatten(),
 nn.Linear(512, 128), nn.ReLU(), nn.Dropout(0.2),
 nn.Linear(128, 1), nn.Sigmoid())

Changing the model

■ The model has three submodels: features, avgpool and classifier. Our goal is:
a. make the features module’s weights fixed,
b. adapt the last two modules to our problem and learn their weights.

■ For a, we just need to make the parameters of the features module not learnable by
setting their requires_grad option to false:

■ For b, we replace VGG16’s original AvgPool layer with one that returns a tensor of size
512×1×1 and replace its classifier layer with one that outputs a simple scalar (which is
enough for us, since our dataset only has two classes)

for param in model.features.parameters():
 param.requires_grad = False

model.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1))
model.classifier = nn.Sequential(nn.Flatten(),
 nn.Linear(512, 128), nn.ReLU(), nn.Dropout(0.2),
 nn.Linear(128, 1), nn.Sigmoid())

Note that we have to add
the sigmoid at the end,

because of the loss we’ll
use this time (BCE).

■ We can now check the
summary of our new
VGG16-based model:

■ Note the the new model
has only 65k parameter to
be learned compared to
the original 135 million
from VGG16.

Model Summary

--
 Layer (type) Output Shape Param #
==
 Conv2d-1 [-1, 64, 244, 244] 1,792
 ReLU-2 [-1, 64, 244, 244] 0
 Conv2d-3 [-1, 64, 244, 244] 36,928
 ReLU-4 [-1, 64, 244, 244] 0
 MaxPool2d-5 [-1, 64, 122, 122] 0

 (...) (...) (...)
 ReLU-30 [-1, 512, 15, 15] 0
 MaxPool2d-31 [-1, 512, 7, 7] 0
AdaptiveAvgPool2d-32 [-1, 512, 1, 1] 0
 Flatten-33 [-1, 512] 0
 Linear-34 [-1, 128] 65,664
 ReLU-35 [-1, 128] 0
 Dropout-36 [-1, 128] 0
 Linear-37 [-1, 1] 129
 Sigmoid-38 [-1, 1] 0
==
Total params: 14,780,481
Trainable params: 65,793
Non-trainable params: 14,714,688
---(...)

from torchsummary import summary
summary(model.to(device),(3,224,224))

Loss, optimizer and auxiliary functions

■ This time, since we only have two classes (cats and dogs) we’ll use the Binary
Cross-Entropy loss (BCE), instead our usual Cross Entropy (CE):

BCE is handy since we only need one scalar output, as with CE we’d need two, since we
have two classes.

■ We then just reuse the same optimizer and the auxiliary functions as usual:

def train_batch(x, y, model, opt, loss_fn):
 model.train()
 opt.zero_grad() # Flush memory
 batch_loss = loss_fn(model(x), y) # Loss
 batch_loss.backward() # Compute gradients
 opt.step() # Make a GD step
 return batch_loss.detach().cpu().numpy()

@torch.no_grad()
def accuracy(x, y, model):
 model.eval()
 prediction = model(x)
 pred_class = (prediction > 0.5)
 s = torch.sum((pred_class == y).float()) / len(y)
 return s.cpu().numpy()

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

loss_fn = nn.BCELoss()

Train the model

■ As before we train the model in a for loop for the required number of epochs:

Note that, for simplicity, we are using Python’s list comprehension for training each each
batch in each epoch. See previous lectures for a more detailed loop.

import numpy as np
train_losses, train_accuracies, n_epochs = [], [], 5
for epoch in range(n_epochs):
 print(f"Running epoch {epoch + 1} of {n_epochs}")
 train_epoch_losses, train_epoch_accuracies = [], []

 train_epoch_losses = [train_batch(x, y, model, optimizer, loss_fn) for x, y in trn_dl]
 train_epoch_loss = np.mean(train_epoch_losses)

 train_epoch_accuracies = [accuracy(x, y, model) for x, y in trn_dl]
 train_epoch_accuracy = np.mean(train_epoch_accuracies)

 train_losses.append(train_epoch_loss)
 train_accuracies.append(train_epoch_accuracy)

Results and timing

■ Plotting the training loss and accuracy we get:

■ After that, we can then check the test accuracy:

epoch_accuracies = [accuracy(x, y, model) for x, y in test_dl]
print(f"Test accuracy: {np.mean(epoch_accuracies)}")

Test accuracy: 0.9833984375

Comparison to a CNN from scratch

■ We could also compare this model with a somewhat deep network, trained from scratch
on the whole data set.

■ To create the dataset in an efficient way, we first create a function that returns a
ConvLayer with batch normalization and max pooling:

def ConvLayer(in_ch, out_ch, kernel_size):
 return nn.Sequential(nn.Conv2d(in_ch, out_ch, kernel_size), nn.ReLU(),
 nn.BatchNorm2d(out_ch),
 nn.MaxPool2d(2))

model = nn.Sequential(ConvLayer(3, 64, 3),
 ConvLayer(64, 512, 3),
 ConvLayer(512, 512, 3),
 ConvLayer(512, 512, 3),
 ConvLayer(512, 512, 3),
 ConvLayer(512, 512, 3),
 nn.Flatten(),
 nn.Linear(512, 1), nn.Sigmoid())

■ Then, we create our model based
on 6 ConvLayers for the feature
learning phase and 1 Dense layer
for the final classifier (followed by
a sigmoid as done before).

Model parameters and results.

■ Printing the summary of the model
would show that we need to learn
around 10 million parameters.

■ Since we are also using all the
~25k 3×244×244 images in the
dataset, we’d need a lot of time to
train this model.

■ For comparison, in FMNIST, we
needed around 1 min to train a
model of 800k weight on a
dataset of ~60k 1×28×28 images.

--
 Layer (type) Output Shape Param #
==
 Conv2d-1 [-1, 64, 222, 222] 1,792
 ReLU-2 [-1, 64, 222, 222] 0
 BatchNorm2d-3 [-1, 64, 222, 222] 128
 MaxPool2d-4 [-1, 64, 111, 111] 0
 Conv2d-5 [-1, 512, 109, 109] 295,424
 ReLU-6 [-1, 512, 109, 109] 0
 BatchNorm2d-7 [-1, 512, 109, 109] 1,024
 MaxPool2d-8 [-1, 512, 54, 54] 0

 (...) (...) (...)
 BatchNorm2d-23 [-1, 512, 3, 3] 1,024
 MaxPool2d-24 [-1, 512, 1, 1] 0
 Flatten-25 [-1, 512] 0
 Linear-26 [-1, 1] 513
 Sigmoid-27 [-1, 1] 0
==
Total params: 9,742,209
Trainable params: 9,742,209
Non-trainable params: 0
--

■ The test classification accuracy in 5 epochs is, however, not impressive at ~86%.

Training Model from Scratch vs. Pretrained Model

■ The performance difference is impressive between the two (98% vs. 86%).
■ Despite having so few parameters to learn, the pretrained VGG model adapted to our

problem is vastly superior, which brings evidence to the power of transfer learning.
■ It also showed how we could leverage the information learned from VGG on ImageNet to

our problem without needing so many data points/images.
■ The reasons why the model trained from scratch was so underperforming can be many,

such as:
a. It didn’t train long enough,
b. The choice of hyperparameter could be improved,
c. It needed more data to capture the nuances of the difference between cats and dogs.
d. It suffered from the vanishing gradient problem.

■ The problem in d is typical of deep nets, and we’ll learn how to tackle it later today.

Exercise (In pairs)

■ The VGG16 network was trained on RBG images. Say we need to learn on dataset of
grayscale images, and we’d like to use transfer learning from VGG16 trained on
ImageNet. What should we do?

■ Say we decided to add a ConvLayer of 1 input channel and 3 output channels at the
beginning of VGG16 and keep all the other ConvLayers’ weights not learnable. Then we
just that new layer’s and the dense layers’ weights. Would this approach work for us?

Click here to open code in Colab

https://colab.research.google.com/drive/1CN8PO3g3jKct-A6VgKpu7A2b32U0ETq1?usp=sharing
https://colab.research.google.com/drive/1CN8PO3g3jKct-A6VgKpu7A2b32U0ETq1?usp=sharing

The Vanishing Gradient problem

■ VGG16 (and VGG19) is so good! Why can’t we go VGG25, VGG50 or VGG100?
■ Unfortunately, training very deep networks in the VGG style is very hard due to what is

called the Vanishing Gradients, i.e.: the gradient exponentially decreases and
approaches 0 as more layers are being multiplied during backpropagation.

■ Why does that happen? As we did in a previously, consider a network of one fully
connected hidden layer and the cross entropy loss on only one datapoint x with label y:

■ Again, let u1(z) = -yTz, u2(z) = log(z), u3(z) = softmax(z), u4(z) = W1z, u5(z) = a(z),
u6(z) = zTx. Then have that u0 = u1(u2(u3(u4(u5(u6(W0)))))) and that:

The Vanishing Gradient problem

■ That means that in order to find the update for the weights of the first layer, one has to
proceed with 6 multiplications due to the chain rule. This implies that:
● With more layers, we’d need more multiplications to get the first layer’s weights updated.
● If many of these multiplications are with numbers (absolute values are lesser than 1*), we’d have a

final product that is very small**.

■ Example: if we had 15 multiplications whose terms are of absolute value of around 0.7,
we’d have a gradient ound (0.7)15 ≈ 0.005.

■ Note that this affects more the weights on initial layers than the final ones, which makes
learning the latter difficult, and hinders the performance of very deep networks.

■ Batch Normalization and ReLU activations help solve the Vanishing Gradient problem,
but we can can also change the network architecture to improve learning.

* The vanishing gradient is a big problem for networks with sigmoid activations, since its derivative is always < 1. ReLU’s are also useful
because they don’t have this property.
** We can also encounter the Exploding Gradient issue, when many of these numbers are larger than 1.

x1

x2

…

xD

1

Feed Forward Networks

h1

h2

…

hE

1

g1

g2

gF

ŷ1

ŷ2

ŷK

…

1

…

k1

k2

kP

1

…

…

…

…

■ All the networks we’ve seen so far have two things in common: (1) the data moves in
only one direction and (2) there is only one possible sequence of layer to do so.

x1

x2

…

xD

1

Feed Forward Networks

h1

h2

…

hE

1

g1

g2

gF

ŷ1

ŷ2

ŷK

…

1

…

k1

k2

kP

1

…

…

…

…

■ This the case of both the Multilayer Perceptron (last slide) and the Convolutional Neural
Network (below), which can be seen as just a sparser version of the MLP.

Feed Forward Networks

■ The fact that the data moves in one direction makes it a Feed Forward network and if
there is one sequence of layers it means that it doesn’t have skip connections.

In
pu

t L
ay

er

H
id

de
n

La
ye

r 1

H
id

de
n

La
ye

r 2

H
id

de
n

La
ye

r L

O
ut

pu
t L

ay
er

…

Feed Forward Networks

■ The networks with pooling layers or a mix of convolutional and linear (also called dense)
layers we’ve seen so far are still Feed Forward.

In
pu

t L
ay

er

C
on

vL
ay

er
 1

O
ut

pu
t L

ay
er

M
ax

 P
oo

lin
g
1

C
on

vL
ay

er
 1

M
ax

 P
oo

lin
g
1

D
en

se
 L

ay
er

 1

D
en

se
 L

ay
er

 2

Feed Forward Networks

■ Adding features such as Dropout, Batch Normalization and a flattening layer doesn’t
change the network dataflow.

In
pu

t L
ay

er

C
on

vL
ay

er

M
ax

 P
oo

lin
g

D
en

se
 L

ay
er

D
ro

po
ut

Ba
tc

hN
or

m

D
ro

po
ut

Fl
at

te
n

O
ut

pu
t L

ay
er

■ While ReLU and Batch Normalization help solve the vanishing gradient problem, we can
also use residual layers to improve our solution.

■ A residual layer has the following operation, where NNθ represents a layer, a sequence
of layers or an entire network:

where one has to be careful that the output size of NNθ should be the same as its input.
■ The link between the input and the output that skips NNθ is called a skip connection.
■ Note that this network allows the information to flow in two possible directions, which is

not possible in the networks we’ve seen so far.

z

Residual Neural Networks

N
N
θ + NNθ(z) + z

Residual Neural Networks

■ Note that d(NNθ(z) + z)/dW0 = dNNθ(z)/dW0 + dz/dW0, where W0 is are the weights on
the first layer of a network.

■ That is: if the derivative gets diminished when crossing NNθ, it doesn’t get very small as it
gets bumped up by the prior derivatives (represented in dz/dW0).

■ This insight led to the development of Deep Residual Networks (ResNets), published
2015, which attained a 5.25%, 4.60% and 4.49% classification error rates on ImageNet
with networks of 50, 101 and 152 layers, respectively!

■ All these architectures had the following as their main building block:

+
C

on
vL

ay
er

C
on

vL
ay

er

Re
LU

https://arxiv.org/abs/1512.03385

VGG vs. ResNet

■ In the paper that introduced ResNets, the authors also made a comparison between a
residual network with 34 layers and VGG19:

■ Note that they only used one fully connected layer for the classification step.
■ That made the number of parameters in their network be 5x smaller than VGG in this

case, also illustrating how good their feature learning phase was.

ResNets in PyTorch

■ ResNets are a great example of why PyTorch is very easy when writing more complex
networks. To create a residual layer block from ResNet, we can simply write:

import torch
import numpy as np

class ResidualBlock(nn.Module):
 def __init__(self, in_ch, kernel_size):
 super().__init__()
 padding = kernel_size - int(np.ceil(kernel_size / 2)) # Adding padding to keep image sizes the
 # before and after the convolutions
 self.ConvLayer0 = nn.Conv2d(in_ch, in_ch, kernel_size,
 padding=padding) # Note that the num. of channels in the
 self.ConvLayer1 = nn.Conv2d(in_ch, in_ch, kernel_size, # input is the same as in the output.
 padding=padding)
 self.relu = nn.ReLU()

 def forward(self, x):
 x = self.ConvLayer1(self.relu(self.ConvLayer0(x))) + x # Simply applies the residual formula
 return x

Pretrained ResNets

■ Just as we did with VGG16, we can also use pre-trained ResNets. For example, for the
ResNet50, which 50 layers, we use models.resnet50():

where models.ResNet50_Weights.IMAGENET1K_V1 are the same weights that
attained 5.25% error rate on the ImageNet challenge.

■ Similarly, we can also load ResNet101 and ResNet152, whose summaries are:

■ Note: ResNets use many more layers, but fewer weights than VGG16 with ~135 mi.

model = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)

summary(models.resnet152().to(device),(3,224,224))summary(models.resnet101().to(device),(3,224,224))

(...)===
Total params: 44,549,160
Trainable params: 44,549,160
Non-trainable params: 0
--(...)

(...)===
Total params: 60,192,808
Trainable params: 60,192,808
Non-trainable params: 0
--(...)

Exercise (in pairs)

■ When defining the Residual Layer, we added the following line to keep image sizes the
same:

Explain how this line is necessary for that goal and how it attains it. When does this
solution break (hint: try out different kernel sizes) and explain why it breaks.

■ Say you’d like to create a ResNet9, with an initial ConvLayer, followed by 3 Residual
Layers. How would you do it using the code in here and nn.Sequential?

padding = kernel_size - int(np.ceil(kernel_size / 2))

