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Recap: VGG16 network

■ Last time, we saw the VGG16 network that produced incredible results on the ImageNet 
challenge using a somewhat simple architecture. 

■ Despite its simplicity, this network is very slow to train (the original VGG model was 
trained in 2-3 weeks), mainly because of its sheer amount of parameters: 135 million!
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■ Beyond the size problem found in the VGG16 architecture, it also faces what is called the 
Vanishing Gradient problem, which makes its training slower. 

■ Today, we’ll see how make the deep networks useful in practice for computationally low 
budget applications using of a technique called transfer learning, which takes 
advantages of pre trained neural networks.

■ We’ll also see how to overcome the Vanishing Gradient problem via what are called 
Residual Networks.

Deep Nets in practice



Transfer Learning

■ Transfer learning is a technique where knowledge gained from one task is leveraged to 
solve another similar task.

■ Specifically to the image classification task, we can make use of the visual features 
learned by one network trained on some dataset and tune it so that learned feature 
extractor can be used in our specific dataset. 

■ Put in another way, we reuse 
the pre-trained weights 
from a network on its feature 
learning phase and only 
replace the final dense 
layers so the final model fits 
our data.



Transfer Learning

■ An example of this would be like done below, where the knowledge of what was learned 
by a CNN while trained on given dataset (like ImageNet) is transferred to another 
problem that does not involve the same kinds of images from the first dataset.

■ From this perspective, the main purpose of the final dense layers on the second problem 
is to adapt that knowledge (the CNN output) to the new classes. This process is called 
fine tuning.
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Transfer Learning: Preprocessing

■ In order for transfer learning to work in its full potential, some preprocessing of the new 
dataset has to be done before it enters in the pre-trained network. 

■ This ensures that the data coming follows the same format of the data it was trained on.

■ In the case of the VGG net, we need the images to RGB of size 244×244. We also 
normalize them to follow the same mean and std from the ImageNet data.

Dataset 1
(Ex.: ImageNet)

Feature Learning 
(CNN)

Final Classifier
(Dense)

Final Classes
(bike, horse, hair 
spray, chair, …)

Dataset 2
(Ex.: Cats and Dogs)

Feature Learning 
(CNN)

Final Classifier
(Dense)

Final Classes
(cat or dog)

Knowledge being transferred 

Pr
e-

Pr
oc

es
si

ng



■ To try out transfer learning, we’ll use a famous dataset called Cats vs. Dogs. 
■ The dataset contains 12491 and 12470 photos of various sizes of cats and dogs, 

respectively, under various challenging settings. 

■ It is organized in two folders (test and train data), each with a cat and a dog subfolder.
■ Our objective is to use VGG16 trained on ImageNet to learn a classifier for this dataset.

Cats vs. Dogs Dataset

https://www.kaggle.com/c/dogs-vs-cats


Cats vs. Dogs dataset class

■ Since we are not using one of PyTorch’s datasets, our Dataset class is more complicated:

from glob import glob
import torchvision.transforms as transforms
import torchvision.io as io

class CatsDogs(Dataset):
   def __init__(self, folder):
       cats, dogs = glob(folder+ '/cats/*.jpg' ), glob(folder+ '/dogs/*.jpg' )
       self.img_paths = cats[: 500] + dogs[:500]
       self.normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406],
                                             std=[0.229, 0.224, 0.225])
       self.resize = transforms.Resize(( 224, 224))
       self.labels = [fpath.split( '/')[-1].startswith( 'dog')
                      for fpath in self.img_paths]
   def __len__(self):
       return len(self.img_paths)
   def __getitem__(self, ix):
       img = io.read_image( self.img_paths[ix])
       label = torch.tensor([ self.labels[ix]])
       img = self.resize(img/ 255.)
       img = self.normalize(img)
       return img.float().to(device) , label.float().to(device)



Cats vs. Dogs dataset class

■ Since we are not using one of PyTorch’s datasets, our Dataset class is more complicated:

from glob import glob
import torchvision.transforms as transforms
import torchvision.io as io

class CatsDogs(Dataset):
   def __init__(self, folder):
       cats, dogs = glob(folder+ '/cats/*.jpg' ), glob(folder+ '/dogs/*.jpg' )
       self.img_paths = cats[: 500] + dogs[:500]
       self.normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406],
                                             std=[0.229, 0.224, 0.225])
       self.resize = transforms.Resize(( 224, 224))
       self.labels = [fpath.split( '/')[-1].startswith( 'dog')
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   def __getitem__(self, ix):
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       img = self.resize(img/ 255.)
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Fetch for all image paths under 
each folder using the library glob.

Only use the first 500 images of 
each class, for a total of 1000.

We’ll use this function to change 
the mean and standard deviation 
of each channel in each datapoint 

to match those statistics from 
ImageNet 

We’ll also use this function to 
resize the images to the size 

originally used by VGG16.

This creates the vector of labels 
according to which folder each file 

is located in.



Cats vs. Dogs dataset class

■ Since we are not using one of PyTorch’s datasets, our Dataset class is more complicated:

from glob import glob
import torchvision.transforms as transforms
import torchvision.io as io

class CatsDogs(Dataset):
   def __init__(self, folder):
       cats, dogs = glob(folder+ '/cats/*.jpg' ), glob(folder+ '/dogs/*.jpg' )
       self.img_paths = cats[: 500] + dogs[:500]
       self.normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406],
                                             std=[0.229, 0.224, 0.225])
       self.resize = transforms.Resize(( 224, 224))
       self.labels = [fpath.split( '/')[-1].startswith( 'dog')
                      for fpath in self.img_paths]
   def __len__(self):
       return len(self.img_paths)
   def __getitem__(self, ix):
       img = io.read_image( self.img_paths[ix])
       label = torch.tensor([ self.labels[ix]])
       img = self.resize(img/ 255.)
       img = self.normalize(img)
       return img.float().to(device) , label.float().to(device)

Reads the image in a given path

Turns the image label into a tensor

Resizes and normalizes the image



Cats vs. Dogs dataset and VGG16 model

■ Now, say that you divided the dataset in a folder for training data and another for testing. 
You can then create the train and test data loaders as follows:

■ With the data done, go to the creation of our model. We’ll use the VGG16 network with 
pretrained weights when it was trained on the ImageNet dataset.

■ In PyTorch, we specify this requirement by setting the parameter weights on 
models.vgg16 to the set of weights we are want, in this case IMAGENET1K_V1.

train_data_dir, test_data_dir = 'training_set',  'test_set'

train = CatsDogs(train_data_dir)
test = CatsDogs(test_data_dir)
trn_dl = DataLoader(train, batch_size=32, shuffle=True)
test_dl = DataLoader(test, batch_size=32, shuffle=True)

model = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1)



Checking the model

■ As per good practice, we print the model to check what it provides us: 

print(model)

VGG(
  (features): Sequential(

(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
(...)
(29): ReLU(inplace=True)
(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)

  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(

(0): Linear(in_features=25088, out_features=4096, bias=True)
(1): ReLU(inplace=True)
(2): Dropout(p=0.5, inplace=False)
(3): Linear(in_features=4096, out_features=4096, bias=True)
(4): ReLU(inplace=True)
(5): Dropout(p=0.5, inplace=False)
(6): Linear(in_features=4096, out_features=1000, bias=True)

  )
)



Changing the model

■ The model has three submodels: features, avgpool and classifier. Our goal is:
a. make the features  module’s weights fixed,
b. adapt the last two modules to our problem and learn their weights.

■ For a, we just need to make the parameters of the features module not learnable by 
setting their requires_grad option to false:

■ For b, we replace VGG16’s original AvgPool layer with one that returns a tensor of size 
512×1×1 and replace its classifier layer with one that outputs a simple scalar (which is 
enough for us, since our dataset only has two classes)

for param in model.features.parameters():
    param.requires_grad = False

model.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1))
model.classifier = nn.Sequential(nn.Flatten(),
                                nn.Linear(512, 128), nn.ReLU(), nn.Dropout(0.2),
                                nn.Linear(128, 1), nn.Sigmoid())



Changing the model

■ The model has three submodels: features, avgpool and classifier. Our goal is:
a. make the features  module’s weights fixed,
b. adapt the last two modules to our problem and learn their weights.

■ For a, we just need to make the parameters of the features module not learnable by 
setting their requires_grad option to false:

■ For b, we replace VGG16’s original AvgPool layer with one that returns a tensor of size 
512×1×1 and replace its classifier layer with one that outputs a simple scalar (which is 
enough for us, since our dataset only has two classes)

for param in model.features.parameters():
    param.requires_grad = False

model.avgpool = nn.AdaptiveAvgPool2d(output_size=(1, 1))
model.classifier = nn.Sequential(nn.Flatten(),
                                nn.Linear(512, 128), nn.ReLU(), nn.Dropout(0.2),
                                nn.Linear(128, 1), nn.Sigmoid())

Note that we have to add 
the sigmoid at the end, 

because of the loss we’ll 
use this time (BCE).



■ We can now check the 
summary of our new 
VGG16-based model:

■ Note the the new model 
has only 65k parameter to 
be learned compared to 
the  original 135 million 
from VGG16.

Model Summary

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 244, 244]           1,792
              ReLU-2         [-1, 64, 244, 244]               0
            Conv2d-3         [-1, 64, 244, 244]          36,928
              ReLU-4         [-1, 64, 244, 244]               0
         MaxPool2d-5         [-1, 64, 122, 122]               0

    (...)   (...)           (...)
             ReLU-30          [-1, 512, 15, 15]               0
        MaxPool2d-31            [-1, 512, 7, 7]               0
AdaptiveAvgPool2d-32            [-1, 512, 1, 1]               0
          Flatten-33                  [-1, 512]               0
           Linear-34                  [-1, 128]          65,664
             ReLU-35                  [-1, 128]               0
          Dropout-36                  [-1, 128]               0
           Linear-37                    [-1, 1]             129
          Sigmoid-38                    [-1, 1]               0
================================================================
Total params: 14,780,481
Trainable params: 65,793
Non-trainable params: 14,714,688
-----------------------------------------------------------(...)

from torchsummary import summary
summary(model.to(device),(3,224,224)) 



Loss, optimizer and auxiliary functions 

■ This time, since we only have two classes (cats and dogs) we’ll use the Binary 
Cross-Entropy loss (BCE), instead our usual Cross Entropy (CE):

BCE is handy since we only need one scalar output, as with CE we’d need two, since we 
have two classes.

■ We then just reuse the same optimizer and the auxiliary functions as usual:

def train_batch(x, y, model, opt, loss_fn):
   model.train()
   opt.zero_grad() # Flush memory 
   batch_loss = loss_fn(model(x), y) # Loss
   batch_loss.backward() # Compute gradients
   opt.step() # Make a GD step
   return batch_loss.detach().cpu().numpy()

@torch.no_grad()
def accuracy(x, y, model):
   model.eval()
   prediction = model(x)
   pred_class = (prediction > 0.5)
   s = torch.sum((pred_class == y).float()) / len(y)
   return s.cpu().numpy()

optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

loss_fn = nn.BCELoss()



Train the model

■ As before we train the model in a for loop for the required number of epochs:

Note that, for simplicity, we are using Python’s list comprehension for training each each 
batch in each epoch. See previous lectures for a more detailed loop.

import numpy as np
train_losses, train_accuracies, n_epochs = [], [], 5
for epoch in range(n_epochs):
   print(f"Running epoch {epoch + 1} of {n_epochs}")
   train_epoch_losses, train_epoch_accuracies = [], []

   train_epoch_losses = [train_batch(x, y, model, optimizer, loss_fn) for x, y in trn_dl]
   train_epoch_loss = np.mean(train_epoch_losses)

   train_epoch_accuracies = [accuracy(x, y, model) for x, y in trn_dl]
   train_epoch_accuracy = np.mean(train_epoch_accuracies)

   train_losses.append(train_epoch_loss)
   train_accuracies.append(train_epoch_accuracy)



Results and timing

■ Plotting the training loss and accuracy we get:

■ After that, we can then check the test accuracy: 

epoch_accuracies = [accuracy(x, y, model) for x, y in test_dl]
print(f"Test accuracy: {np.mean(epoch_accuracies)}")

Test accuracy: 0.9833984375



Comparison to a CNN from scratch

■ We could also compare this model with a somewhat deep network, trained from scratch 
on the whole data set.

■ To create the dataset in an efficient way, we first create a function that returns a 
ConvLayer with batch normalization and max pooling:

def ConvLayer(in_ch, out_ch, kernel_size):
    return nn.Sequential(nn.Conv2d(in_ch, out_ch, kernel_size), nn.ReLU(),
                         nn.BatchNorm2d(out_ch),
                         nn.MaxPool2d(2))

model = nn.Sequential(ConvLayer(3, 64, 3),
                      ConvLayer(64, 512, 3),
                      ConvLayer(512, 512, 3),
                      ConvLayer(512, 512, 3),
                      ConvLayer(512, 512, 3),
                      ConvLayer(512, 512, 3),
                      nn.Flatten(),
                      nn.Linear(512, 1), nn.Sigmoid())

■ Then, we create our model based 
on 6 ConvLayers for the feature 
learning phase and 1 Dense layer 
for the final classifier (followed by 
a sigmoid as done before).



Model parameters and results.

■ Printing the summary of the model 
would show that we need to learn 
around 10 million parameters.

■ Since we are also using all the 
~25k 3×244×244 images in the 
dataset, we’d need a lot of time to 
train this model.  

■ For comparison, in FMNIST, we 
needed around 1 min to train a 
model of 800k weight on a 
dataset of ~60k 1×28×28 images. 

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 64, 222, 222]           1,792
              ReLU-2         [-1, 64, 222, 222]               0
       BatchNorm2d-3         [-1, 64, 222, 222]             128
         MaxPool2d-4         [-1, 64, 111, 111]               0
            Conv2d-5        [-1, 512, 109, 109]         295,424
              ReLU-6        [-1, 512, 109, 109]               0
       BatchNorm2d-7        [-1, 512, 109, 109]           1,024
         MaxPool2d-8          [-1, 512, 54, 54]               0

  (...)                     (...)            (...)
      BatchNorm2d-23            [-1, 512, 3, 3]           1,024
        MaxPool2d-24            [-1, 512, 1, 1]               0
          Flatten-25                  [-1, 512]               0
           Linear-26                    [-1, 1]             513
          Sigmoid-27                    [-1, 1]               0
================================================================
Total params: 9,742,209
Trainable params: 9,742,209
Non-trainable params: 0
----------------------------------------------------------------

■ The test classification accuracy in 5 epochs is, however, not impressive at ~86%.



Training Model from Scratch vs. Pretrained Model 

■ The performance difference is impressive between the two (98% vs. 86%).
■ Despite having so few parameters to learn, the pretrained VGG model adapted to our 

problem is vastly superior, which brings evidence to the power of transfer learning.
■ It also showed how we could leverage the information learned from VGG on ImageNet to 

our problem without needing so many data points/images.
■ The reasons why the model trained from scratch was so underperforming can be many, 

such as:
a. It didn’t train long enough,
b. The choice of hyperparameter could be improved,
c. It needed more data to capture the nuances of the difference between cats and dogs. 
d. It suffered from the vanishing gradient problem.

■ The problem in d is typical of deep nets, and we’ll learn how to tackle it later today.



Exercise (In pairs)

■ The VGG16 network was trained on RBG images. Say we need to learn on dataset of 
grayscale images, and we’d like to use transfer learning from VGG16 trained on 
ImageNet. What should we do? 

■ Say we decided to add a ConvLayer of 1 input channel and 3 output channels at the 
beginning of VGG16 and keep all the other ConvLayers’ weights not learnable. Then we 
just that new layer’s and the dense layers’ weights. Would this approach work for us?

Click here to open code in Colab

https://colab.research.google.com/drive/1CN8PO3g3jKct-A6VgKpu7A2b32U0ETq1?usp=sharing
https://colab.research.google.com/drive/1CN8PO3g3jKct-A6VgKpu7A2b32U0ETq1?usp=sharing


The Vanishing Gradient problem

■ VGG16 (and VGG19) is so good! Why can’t we go VGG25, VGG50 or VGG100?
■ Unfortunately, training very deep networks in the VGG style is very hard due to what is 

called the Vanishing Gradients, i.e.: the gradient exponentially decreases and 
approaches 0 as more layers are being multiplied during backpropagation. 

■ Why does that happen? As we did in a previously, consider a network of one fully 
connected hidden layer and the cross entropy loss on only one datapoint x with label y:

■ Again, let u1(z) = -yTz, u2(z) = log(z), u3(z) = softmax(z), u4(z) = W1z, u5(z) = a(z), 
u6(z) = zTx. Then have that u0 = u1(u2(u3(u4(u5(u6(W0)))))) and that:



The Vanishing Gradient problem

■ That means that in order to find the update for the weights of the first layer, one has to 
proceed with 6 multiplications due to the chain rule. This implies that:
● With more layers, we’d need more multiplications to get the first layer’s weights updated.
● If many of these multiplications are with numbers (absolute values are lesser than 1*), we’d have a 

final product that is very small**.

■ Example: if we had 15 multiplications whose terms are of absolute value of around 0.7, 
we’d have a gradient ound (0.7)15 ≈ 0.005.

■ Note that this affects more the weights on initial layers than the final ones, which makes 
learning the latter difficult, and hinders the performance of very deep networks.

■ Batch Normalization and ReLU activations help solve the Vanishing Gradient problem, 
but we can can also change the network architecture to improve learning. 

* The vanishing gradient is a big problem for networks with sigmoid activations, since its derivative is always < 1. ReLU’s are also useful 
because they don’t have this property.  
** We can also encounter the Exploding Gradient issue, when many of these numbers are larger than 1.
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■ All the networks we’ve seen so far have two things in common: (1) the data moves in 
only one direction and (2) there is only one possible sequence of layer to do so.
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■ This the case of both the Multilayer Perceptron (last slide) and the Convolutional Neural 
Network (below), which can be seen as just a sparser version of the MLP.



Feed Forward Networks

■ The fact that the data moves in one direction makes it a Feed Forward network and if 
there is one sequence of layers it means that it doesn’t have skip connections.
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Feed Forward Networks

■ The networks with pooling layers or a mix of convolutional and linear (also called dense) 
layers we’ve seen so far are still Feed Forward.
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Feed Forward Networks

■ Adding features such as Dropout, Batch Normalization and a flattening layer doesn’t 
change the network dataflow.
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■ While ReLU and Batch Normalization help solve the vanishing gradient problem, we can 
also use residual layers to improve our solution. 

■ A residual layer has the following operation, where NNθ represents a layer, a sequence 
of layers or an entire network:

where one has to be careful that the output size of NNθ should be the same as its input.
■ The link between the input and the output that skips NNθ is called a skip connection.
■ Note that this network allows the information to flow in two possible directions, which is 

not possible in the networks we’ve seen so far.

z

Residual Neural Networks 

N
N
θ + NNθ(z) + z



Residual Neural Networks 

■ Note that d(NNθ(z) + z)/dW0 = dNNθ(z)/dW0 + dz/dW0, where W0 is are the weights on 
the first layer of a network.

■ That is: if the derivative gets diminished when crossing NNθ, it doesn’t get very small as it 
gets bumped up by the prior derivatives (represented in dz/dW0).

■ This insight led to the development of Deep Residual Networks (ResNets), published 
2015, which attained a 5.25%, 4.60% and 4.49% classification error rates on ImageNet 
with networks of 50, 101 and 152 layers, respectively!

■ All these architectures had the following as their main building block:  
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https://arxiv.org/abs/1512.03385


VGG vs. ResNet

■ In the paper that introduced ResNets, the authors also made a comparison between a 
residual network with 34 layers and VGG19:

■ Note that they only used one fully connected layer for the classification step.
■ That made the number of parameters in their network be 5x smaller than VGG in this 

case, also illustrating how good their feature learning phase was.



ResNets in PyTorch

■ ResNets are a great example of why PyTorch is very easy when writing more complex 
networks. To create a residual layer block from ResNet, we can simply write:

import torch
import numpy as np

class ResidualBlock(nn.Module):
   def __init__(self, in_ch, kernel_size):
       super().__init__()
       padding = kernel_size - int(np.ceil(kernel_size / 2))   # Adding padding to keep image sizes the 
             # before and after the convolutions
       self.ConvLayer0 = nn.Conv2d(in_ch, in_ch, kernel_size, 
                                   padding=padding)            # Note that the num. of channels in the 
       self.ConvLayer1 = nn.Conv2d(in_ch, in_ch, kernel_size,  # input is the same as in the output.
                                   padding=padding)
       self.relu = nn.ReLU()

   def forward(self, x):
       x = self.ConvLayer1(self.relu(self.ConvLayer0(x))) + x  # Simply applies the residual formula
       return x



Pretrained ResNets 

■ Just as we did with VGG16, we can also use pre-trained ResNets. For example, for the 
ResNet50, which 50 layers, we use models.resnet50():

where models.ResNet50_Weights.IMAGENET1K_V1 are the same weights that 
attained 5.25% error rate on the ImageNet challenge.

■ Similarly, we can also load ResNet101 and ResNet152, whose summaries are:

■ Note: ResNets use many more layers, but fewer weights than VGG16 with ~135 mi.

model = models.resnet50(weights=models.ResNet50_Weights.IMAGENET1K_V1)

summary(models.resnet152().to(device),(3,224,224))summary(models.resnet101().to(device),(3,224,224))

(...)===================================================
Total params: 44,549,160
Trainable params: 44,549,160
Non-trainable params: 0
------------------------------------------------(...)

(...)===================================================
Total params: 60,192,808
Trainable params: 60,192,808
Non-trainable params: 0
------------------------------------------------(...)



Exercise (in pairs)

■ When defining the Residual Layer, we added the following line to keep image sizes the 
same:

Explain how this line is necessary for that goal and how it attains it. When does this 
solution break (hint: try out different kernel sizes) and explain why it breaks.

■ Say you’d like to create a ResNet9, with an initial ConvLayer, followed by 3 Residual 
Layers. How would you do it using the code in here and nn.Sequential?

padding = kernel_size - int(np.ceil(kernel_size / 2))


